Chlamydia pneumoniae and Atherosclerosis: No Way-Out or Long Way?

What about Renal Failure Patients?

George Tsirpanlis

Renal Unit, Alexandra General Hospital, Athens, Greece

Abstract

Recently, **Chlamydia pneumoniae** is the microorganism frequently implicated in the infection-based inflammatory atherogenous hypothesis. Although in vitro experimental data and initial sero-epidemiologic, pathology-based studies and antibiotic trials supported this interesting hypothesis, later data are conflicting. Some confounding factors are the causes of uncertainty; lacking of standard methods for **C. pneumoniae** detection, co-existence of other atherosclerotic risk factors and anti-inflammatory effects of antibiotics used in clinical trials seem to be the principal ones. Standardization of methodology used, antibiotic trials with a different orientation-design and a vaccine preparation that eventually will be tested in clinical trials with a long follow-up, should provide a definite answer regarding the probability **C. pneumoniae** to be a main, a secondary or an irrelevant factor to atherosclerosis. Studies linking **C. pneumoniae** to inflammation and accelerated atherosclerosis in renal failure patients are accumulated but limitations are similar to the above mentioned.

Introduction

Among the so-called nontraditional risk factors for atherosclerosis, probably the most intriguing [1] (in terms of simplicity and direct effect) is the infectious one where a microorganism is responsible for the initiation and evolution of atherosclerosis. If anti-microbial treatment is efficient for peptic ulcer because **Helicobacter pylori** is implicated in the pathogenesis of this disease, why can’t azithromycin be efficient for coronary heart disease (CHD) treatment?

Fifteen years have passed since the publication of the first serologic study performed in Finland by Saikku et al. [2] who found that patients with CHD were significantly more likely to have serum antibodies against **Chlamydia pneumoniae** than control patients. Since then, hundreds of studies have been published. Despite this large volume of information, we haven’t yet a definite answer about a causal relationship between **C. pneumoniae** and atherosclerosis.

In this short review, what is already known is briefly presented, and confounding factors preventing final clarification of this issue are described. What is expected and what will probably be helpful for confirmation of this hypothesis or reconsideration is also discussed. Accumulated studies about **C. pneumoniae** and atherosclerosis in...
renal failure patients are summarized. A number of comprehensive reviews that have been published recently, offer a more detailed approach to this interesting topic and are recommended [3–6].

Experimental Evidence: Quite Strong

Probably the strongest evidence linking *C. pneumoniae* and atherosclerosis comes from in vitro experimental studies. *C. pneumoniae* can infect, activate and replicate in the main cells – monocytes/macrophages, endothelial and smooth muscle cells (SMCs) – involved in the atherosclerosis process [7]. In vitro infection of endothelial cells induces secretion and up-regulation of factors promoting rolling, tethering, attachment and trans-endothelial migration of monocytes [8, 9] while the infection by *C. pneumoniae* of monocytes induces the differentiation of these cells into macrophages [10], essential first steps in atherosclerotic injury. *C. pneumoniae* also inducients foam cell formation [11], and thus participates in the earlier lesion of atherosclerosis, ‘fatty streak’ formation [12]. Fibrous plaque (the more advanced atherosclerotic lesion), can be promoted by *C. pneumoniae*; it induces production of SMCs growth factors from infected endothelial cells [13] contributing to SMCs activation, migration and proliferation [14] into the neointima as well as production of extracellular matrix, key events in this second atherosclerotic stage [12]. Inflammation within the vessel wall, present in all stages of atherosclerotic process [15], can be sustained by activation of all cells infected by *C. pneumoniae* and production of pro-inflammatory cytokines [16] (probably via nuclear factor kappa B activation [17, 18]). Infection and stimulation of SMCs, followed by the production of metalloproteinases (that results in degradation of extracellular matrix) [19, 20] as well as upregulation of procoagulant factors in endothelial cells, SMCs and macrophages infected by *C. pneumoniae* [21–25] induce plaque destabilization and thrombus formation [12], the final stage of atheroma evolution, after which clinical consequences become apparent.

More interestingly, recent studies showed that *C. pneumoniae* inhibit apoptosis in monocytes and epithelial cells [26, 27] and secrete factors that downregulate expression of major histocompatibility complex in host cells (complex absolutely necessary for antigen recognition) [28]. Both mechanisms (and the second one might be unique for this pathogen) may help *C. pneumoniae* to escape immunological surveillance, establishing a persistent cellular infection and activation, and possible infection of new cells [29]. This chronic persistent infection can mediate the development of a chronic disease like atherosclerosis.

In vivo studies in hyperlipidemic or normolipidemic experimental animals, have shown conflicting results [30, 31]. In a number of them it was found that *C. pneumoniae* acts mainly as co-risk factor, accelerating atherosclerosis in hyperlipidemic animals [32–34].

In summary – as mainly in vitro experimental studies have showed – *C. pneumoniae* has the capability to induce key features in the atherosclerotic process. The fact that this microorganism is capable of inducing atherosclerosis, doesn’t mean at all that it is also necessary for this process to be induced. Other, well-established factors – e.g. oxidized LDL – are efficient and necessary for this process initiation and evolution. If *C. pneumoniae* is the principal (sufficient and necessary) factor in some cases of atherosclerosis induction and evolution, or if it is a co-factor aggravating this process remains to be defined.

Clinical Seroepidemiological Studies: Weak Positive Results

The majority of clinical studies published are based on *C. pneumoniae* serum antibodies (IgG and/or IgA) detection and correlation to clinical, angiographic or laboratory atherosclerotic patient data. Three reports by Danesh et al. [35–37] are indicative. The first one [35], published in 1997, included 18 seroepidemiological studies with 2,700 patients, examining the association of *C. pneumoniae* and CHD or cerebrovascular disease and in the majority of them a positive correlation between seropositivity and atherosclerosis was found (odds ratio, OR, 1.2->8). Only 3 of 18 studies were prospective; serologic criteria were different and in most of them the determination of serum antibodies was performed once. The second [36] report included 14 other prospective studies with 3169 patients with myocardial infarction or death from CHD published until May 2000. These later studies (as well as those included in the third report) were better adjusted for smoking and other risk factors for CHD (as well as for *C. pneumoniae* infection) than those of the first report and showed a borderline association of serum IgG antibodies against *C. pneumoniae* and atherosclerosis (OR 1.15 [95% CI, 0.97–1.36]). The third [37] report published in 2002, included 10 prospective studies with 2,283 cases and examined correlation between IgA antibodies against *C. pneumoniae* (supposed to be a better index of persistent *C. pneumoniae* infection, because of shorter...
serum half-life) and CHD. This later meta-analysis was also weakly positive and of marginal statistical significance (OR 1.25 [CI 95% 1.03–1.53]). Finally, a meta-analysis published in 2003 [38] (including 38 studies published between 1997 and December 2000) is also of interest. The overall OR of prospective case-control studies was lower than the OR of cross-sectional studies (1.1, 95% CI 0.8–1.4 vs. 2.0, 95% CI 1.5–2.6). Moreover, the duration of follow-up in prospective studies was inversely related to the strength of the relation found. Authors of this meta-analysis conclude that their results are probably due to a lack of causality between \textit{C. pneumoniae} and atherosclerosis.

Thus, although initial studies appeared positive, the later ones, better designed and more carefully adjusted for other risk factors, showed a weak positive, of marginal significance, correlation between \textit{C. pneumoniae} seropositivity and atherosclerosis.

\textbf{\textit{C. pneumoniae} in Atheromatous Vessel Wall: Present but How Frequent and What Does That Mean?}

A large number of studies were performed for \textit{C. pneumoniae} identification in atherosclerotic plaques of coronary arteries or other vessel walls. Methods applied varied (polymerase chain reaction, PCR, immunocytochemical staining, ICC, cell cultures, electron microscopy) and even more varied were the results [4]. Higher percentage of \textit{C. pneumoniae} detection in atheroma was found by ICC (in about half of specimens examined), lower by cell cultures (7% of specimens) [4], while PCR results for \textit{C. pneumoniae} DNA detection within atherosclerotic lesions varied between 0 and 100% [39]. Methodological differences seem to be a major problem. In a recent multicenter comparison trial [39] of DNA extraction methods and PCR assays for detection of \textit{C. pneumoniae} in the vessel wall, positivity rates for the same atheroma specimens examined varied between 0 and 60%. In a comprehensive review Boman and Hammerschlag [4] examined the results of 43 studies with 2664 atherosclerotic specimens from human vessel walls, published between 1992 and 2000, where different methods of \textit{C. pneumoniae} identification were used; considering as criterion of true positivity for \textit{C. pneumoniae} detection, confirmation by the use of two (or more) independent techniques (e.g. PCR and cell cultures) they calculated a prevalence of 15.14% for \textit{C. pneumoniae} presence in atheromatous tissue specimens. This percentage is similar to that found by Maass et al. [40] (16%) in 70 human atheromata, applying a highly sensitive cell culture method for \textit{C. pneumoniae} identification – the method considered as gold standard for proving viability of obligatory intracellular in host eukaryotic cells microorganisms (though it is also problematic when applied for \textit{C. pneumoniae} identification). PCR was also used for \textit{C. pneumoniae} DNA detection in peripheral blood mononuclear cells (PBMCs) – monocytes have a crucial role in systemic \textit{C. pneumoniae} dissemination from pulmonary tissue to the vessel wall – with results varying between 8.8 and up to 50% [41, 42] and a prevalence of \textit{C. pneumoniae} DNA in PBMCs – as was recently summarized from 18 relevant studies [43] – of 14.3% in atherosclerotic patients.

Thus, although \textit{C. pneumoniae} is present in atherosclerotic vessel wall or circulating monocytes, the true prevalence is unknown. A positivity estimation of 15–16% of \textit{C. pneumoniae} in arterial wall identified by cell culture/or a combination of methods or of \textit{C. pneumoniae} DNA in PBMCs detected by PCR) in atherosclerotic patients may be high or low, because we don’t know how sensitive and specific our methods are and we can not also know, due to the same limitations, if this percentage is significantly higher in atheroma than in normal vessel wall.

\textbf{\textit{C. pneumoniae} Assays: Need of Standardization}

A frequent finding – with some exceptions [44] – in the above mentioned studies, is that \textit{C. pneumoniae} identification in vessel wall [40, 45] or monocytes [41, 42] (with PCR, cell cultures, ICC or other methods) does not correlate with detection of serum antibodies against \textit{C. pneumoniae}. In a recent study, only 10% of PCR positive healthy blood donors for \textit{C. pneumoniae} DNA in PBMCs were also seropositive while seropositivity was 40% in the PCR-negative group [46]. Moreover, culture-documented infection in adults with pneumonia occurs without any detectable serum antibodies [47]. If we add in these findings the fact that seropositivity in the general population is often nearly 70% [48] (while unusual in children younger than 5 years, it is up to 50% by the age of 20 years and 70–80% by the age of 65 years [3]) and that antibody titers fluctuate over time [4], it is clear that seropositivity, as the diagnostic tool used in the majority of clinical studies for atherosclerosis, is not the most reliable method for \textit{C. pneumoniae} identification.

In a workshop for \textit{C. pneumoniae} diagnostic assay standardization, leading researchers in the field tried to formulate, for the first time, specific recommendations.
It should be mentioned that it has been emphasized that ‘no validated serologic marker of persistent or chronic infection, exists in present’ a conclusion of great importance for the C. pneumoniae atherogenous hypothesis based mainly on the assumption of chronic persistent infection. Microimmunofluorescence is the recommended method for C. pneumoniae antibodies detection; using single IgG or IgA titers for determining acute or chronic infection is discouraged, and it is stressed that cell culture remains essential to document C. pneumoniae viability, but requires propagation of the isolate or confirmation by PCR and specific recommendations are given for ICC and PCR [49]. Attempts to explain discrepancies in the reported rates of C. pneumoniae DNA identification [50], reliability of new assay kits [51] and testing of newer, highly sensitive and specific, methods (e.g. real time PCR [52]) are continuous.

Are We Waiting for a Definite Answer from Antibiotic Trials?

Randomized controlled antibiotic trials for atherosclerotic cardiovascular disease (CVD) yielded to diverse results. Two [53, 54] out of 6 relatively small clinical studies of a short (some days up to 1 month) [54–57] or intermediate (3 months) [53, 58] treatment duration with a macrolide (or a combination of antibiotics, [57]) had negative results regarding primary (CVD) and secondary (anti-C. pneumoniae antibodies and/or inflammatory indexes) end points; in one study results were positive [55], in another [56] initially positive and then (after 6 months of follow-up) negative and in a third one [58] vice versa. In the last [57] of the 6 studies mentioned above, a significant (40%) reduction in primary (cardiac) end points but not in secondary ones (antibodies to C. pneumoniae and Helicobacter pylori) was observed. From one more, relatively small study, results are expected [59].

Recently, the negative results (for primary and secondary end points, including C. pneumoniae antibodies) of a larger study, after a short term treatment with azithromycin were published [60]. The largest completed study to date (including 7,724 patients, 83% males with documented myocardial infarction and C. pneumoniae IgG >1/16), after a 3-month treatment with azithromycin, yielded negative results for primary (CVD morbidity and all-cause and CVD mortality) and secondary (anti-C. pneumoniae titers, inflammatory indexes) end points after a median of 14 months of follow-up [61, 62].

Results of 3 important ongoing large studies are expected. In the first one [63], samples of coronary artery for C. pneumoniae detection by PCR are examined, post treatment with azithromycin. In the other two studies (each including 4000 patients) [64, 65] a significantly longer treatment duration (1 and 2 years in azithromycin or a combination of a quinolone and statin) and a relatively long follow-up (2 and 4 years) has been designed.

The main criticism for the studies mentioned above is focused on the antibiotic treatment duration [66]. This criticism is based on the known difficulties of this microorganism eradication [66, 67].

Supposing that large long term treatment studies have positive results, will this be a proof for a causal relationship of C. pneumoniae and atherosclerosis? Most probably not. The reason is, mainly, the presence of two confounding factors; first, the well-known anti-inflammatory [68, 69] (and anti-oxidant – anticoagulant, as well [5]) effects of macrolides that probably (as has, already been shown [57]) could, independently, influence primary (atherosclerotic CVD) and secondary (inflammatory) end points in these studies; second, the limited reliability of serology, used as single diagnostic tool for C. pneumoniae detection in all (except one [63]) of these studies.

Answering the question ‘are antibiotics useful in atherosclerotic CVD treatment’ doesn’t mean that the question ‘is C. pneumoniae the cause of – or even an aggravating factor for – atherosclerosis’ is also answered. Studies with antibiotic trials have probably the power to confirm or not the first, but not the second hypothesis as well.

What about Patients with Renal Failure?

Cardiovascular disease morbidity and mortality is high in chronic renal failure patients and particularly in those on renal replacement treatment. Traditional CVD risk factors do not fully explain the accelerated atherosclerosis present in these patients [70]. Emerging CVD risk factors might also contribute in this population, at the initiation and progression of this process [70]. Inflammation is among these later factors [71]. The infection based atherogenous hypothesis could be a rational basis explaining both, accelerated atherosclerosis and increased inflammation in these patients.

A number of studies, have examined possible association between C. pneumoniae presence and atherosclerosis or/and inflammation in this category of patients (table 1). Worth noting are two more studies; the first one found a higher prevalence of C. pneumoniae antibodies in renal

C. pneumoniae and Atherosclerosis

137
Table 1. Studies correlating *C. pneumoniae* to atherosclerosis – inflammation in renal failure (predialysis, hemodialysis, peritoneal dialysis, transplant) patients

<table>
<thead>
<tr>
<th>C. pneumoniae detection</th>
<th>Correlation to atherosclerosis</th>
<th>Correlation to inflammation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoccali et al. [72]</td>
<td>IgG</td>
<td>(+) carotid artery echo, in males</td>
</tr>
<tr>
<td>Stenvinkel et al. [73]</td>
<td>IgA, IgG</td>
<td>(+) carotid artery echo - IgA</td>
</tr>
<tr>
<td>Zoccali et al. [74]</td>
<td>IgG</td>
<td>(+) carotid artery echo (smokers - high CRP)</td>
</tr>
<tr>
<td>Iliescu et al. [75]</td>
<td>C. pneumoniae DNA in PBMCs by PCR</td>
<td>(-) medical history data</td>
</tr>
<tr>
<td>Haubitz et al. [76]</td>
<td>IgA, IgG</td>
<td>(+) risk of CHD and risk of death (72 months follow-up) – IgA</td>
</tr>
<tr>
<td>Song et al. [77]</td>
<td>IgA, IgG</td>
<td>(+) CHD (coronary angiography data) – IgA</td>
</tr>
<tr>
<td>Kato et al. [78]</td>
<td>IgA, IgG</td>
<td>(+) carotid artery echo-IgA</td>
</tr>
<tr>
<td>Stenvinkel et al. [79]</td>
<td>IgA, IgG</td>
<td>(+) carotid artery echo (IgA in progressors after 12 months re-evaluation)</td>
</tr>
<tr>
<td>Oh et al. [80]</td>
<td>IgG</td>
<td>(+) coronary artery calcification and Carotid artery echo</td>
</tr>
<tr>
<td>Muller et al. [81]</td>
<td>C. pneumoniae DNA in PBMCs by PCR</td>
<td>NM</td>
</tr>
<tr>
<td>Paniagua et al. [82]</td>
<td>IgG</td>
<td>(+) higher CVD mortality (follow-up 10.2 patient-months)</td>
</tr>
<tr>
<td>Wolf et al. [83]</td>
<td>IgA, IgG</td>
<td>(+) medical history data and CVD mortality (2 years follow-up) – IgA</td>
</tr>
<tr>
<td>Tsirpanlis et al. [84, 85]</td>
<td>C. pneumoniae in PBMCs (cell culture and PCR) and IgG</td>
<td>(+) medical history data (patients with C. pneumoniae in PBMCs – not seropositives)</td>
</tr>
<tr>
<td>Bellomo et al. [86]</td>
<td>IgA, IgG</td>
<td>(+) CVD events (36 months follow-up)</td>
</tr>
<tr>
<td>Maeda et al. [87]</td>
<td>IgA, IgG</td>
<td>(-) Carotid artery echo</td>
</tr>
<tr>
<td>Zoccali et al. [88]</td>
<td>IgA, IgG</td>
<td>(-) CVD and all cause mortality after adjustment for traditional and not traditional CVD risk factors (39 ± 20 months follow-up)</td>
</tr>
</tbody>
</table>

CRP = C-reactive protein; PBMCs = peripheral blood mononuclear cells; PCR = polymerase chain reaction; CHD = coronary heart disease; NM = not mentioned; IL-6 = interleukin-6; CVD = cardiovascular disease; IL-1 = interleukin-1; VCAM-1 = vascular cell adhesion molecule-1.

failure patients with a myeloperoxidase (an enzyme involved in the production of free radicals) – high expression – genotype [89]: the second one did not detect *C. pneumoniae* (by cell culture and PCR) in the hyperplastic vein segment in hemodialysis patients with thrombosed vascular graft [90].

Limitations (regarding mainly seropositivity unreliability, unknown sensitivity and specificity of the other methods for *C. pneumoniae* detection and the other atherosclerotic CVD risk factors influences) are the same as in studies in atherosclerotic population with normal renal function. Especially the very recently published study by Zoccali et al. [88], indicates that the more careful adjustment for other CVD risk factors (traditional or not), weakens *C. pneumoniae* and atherosclerosis correlation in renal failure patients – as was observed in similar studies in the general population.

Conclusions

Although the *C. pneumoniae*-based atherogenous hypothesis remains attractive (mainly because of the interesting findings from experimental in vitro data), it seems that establishing a causal relationship between this pathogen and atherosclerosis in humans is complex. Despite the fact that clinical studies based on seropositivity provided the initial stimulus for this hypothesis, later the same type of studies weren’t helpful for a definite clarification or even confounded it. Studies applying various other methods for the detection of this microorganism in vessel walls or monocytes are also confusing. Antibiotic trials – based on seropositivity and macrolide treatment – are also not probably effective in solving this problem. All these unsuccessful attempts seem to lead to a no way-out regarding confirmation of this interesting hypothesis.

There is an urgent need for standardized *C. pneumoniae* detection methods, with high sensitivity and specificity as well as for clear definitions about diagnostic criteria.
Table 2. *C. pneumoniae* and atherosclerosis hypothesis: summary of evidence, initial and later interpretations, confounding factors and expectations in this research field

<table>
<thead>
<tr>
<th>Seroepidemiological studies</th>
<th>Pathology-based studies</th>
<th>Clinical antibiotic trials</th>
<th>Experimental studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial findings/</td>
<td>C. pneumoniae is more frequently detected (by PCR, cell culture, etc.) in atherosclerotic than in normal vessel wall or in PBMCs</td>
<td>C. pneumoniae bactericidal antibiotics improved outcome in atherosclerotic patients</td>
<td>in vitro: C. pneumoniae induces and propagates inflammatory atherosclerotic process; in vivo: C. pneumoniae induces atherosclerosis in experimental animals</td>
</tr>
<tr>
<td>interpretation</td>
<td>inconclusive results: large discrepancies in positivity rates between/within detection methods</td>
<td>more studies with negative than positive results; seropositivity (in most studies) is not affected by antibiotics</td>
<td>new data about C. pneumoniae atherosclerotic effect; in vivo: C. pneumoniae is co-risk factor for atherosclerosis</td>
</tr>
<tr>
<td>Later findings/</td>
<td>lacking of standardized – sensitive and specific – methods for C. pneumoniae detection in healthy or infected tissues.</td>
<td>anti-inflammatory effects of macrolides; possible improvement of CVD outcome independently of their anti-bacterial activity; eradication of C. pneumoniae problematic; seropositivity: unreliable index</td>
<td>other factors (e.g. oxidized-LDL) are effective and – more – necessary for atherosclerosis induction</td>
</tr>
<tr>
<td>interpretation</td>
<td>high prevalence of C. pneumoniae antibodies in general population; other CVD (or C. pneumoniae infection) risk factors might have influenced results; single-sample IgA or IgG: unreliable to define chronic infection</td>
<td>standardization of methods for C. pneumoniae detection</td>
<td>larger ongoing studies results; studies confirming that C. pneumoniae eradication (detected by reliable methods) independently improves atherosclerotic CVD outcome</td>
</tr>
<tr>
<td>Confounding factors</td>
<td>lacking of standardized – sensitive and specific – methods for C. pneumoniae detection in healthy or infected tissues.</td>
<td>larger ongoing studies results; studies confirming that C. pneumoniae eradication (detected by reliable methods) independently improves atherosclerotic CVD outcome</td>
<td>further investigation of molecular mechanisms of C. pneumoniae atherosclerotic capability; standardization of experimental in vivo studies</td>
</tr>
<tr>
<td>What is expected?</td>
<td>definition of serologic criteria for C. pneumoniae persistent infection; improving methods for the detection of antibodies</td>
<td>standardization of methods for C. pneumoniae detection</td>
<td>definition of serologic criteria for C. pneumoniae persistent infection; improving methods for the detection of antibodies</td>
</tr>
<tr>
<td>Other probable solutions</td>
<td>standardization of methods for C. pneumoniae detection</td>
<td>larger ongoing studies results; studies confirming that C. pneumoniae eradication (detected by reliable methods) independently improves atherosclerotic CVD outcome</td>
<td>larger ongoing studies results; studies confirming that C. pneumoniae eradication (detected by reliable methods) independently improves atherosclerotic CVD outcome</td>
</tr>
<tr>
<td></td>
<td>application of newer (e.g. real-time PCR) or combined (e.g. cell culture and PCR) methods</td>
<td>definition of serologic criteria for C. pneumoniae persistent infection; improving methods for the detection of antibodies</td>
<td>application of newer (e.g. real-time PCR) or combined (e.g. cell culture and PCR) methods</td>
</tr>
<tr>
<td></td>
<td>vaccination of C. pneumoniae-free children: follow-up for atherosclerotic CVD</td>
<td>standardization of methods for C. pneumoniae detection</td>
<td>vaccination of C. pneumoniae-free children: follow-up for atherosclerotic CVD</td>
</tr>
</tbody>
</table>

CVD = Cardiovascular disease; PCR = polymerase chain reaction; PBMCs = peripheral blood mononuclear cells.

for entities such as ‘chronic persistent infection’ due to this pathogen. Attempts to this direction are continuous, but the way seems to be long. Antibiotic trials could provide valuable data if focused on *C. pneumoniae* detection, before treatment initiation and verification of this microorganism eradication after treatment completion, by more reliable methods than serology. These methods (e.g. real-time PCR) could be applied in PBMCs for *C. pneumoniae* DNA detection. To overcome the confounding factor of anti-inflammatory antibiotic effects, probably other effective antibiotics should be tried (without anti-inflammatory properties) or, more control groups (matched for inflammation level but without detectable *C. pneumoniae*) should be added in future studies. Treatment duration also has to be long.

Probably the most suitable way for the *C. pneumoniae* – atherosclerosis hypothesis verification is vaccination against this microorganism, before first exposure and the long term follow-up of vaccinated children for atherosclerotic CVD. The coincidence of seropositivity appearance, in the first/second decade of life, with the well-known atherosclerosis initiation in the same decades of life [12, 15], is a strong point that promises reliable conclusions, from such an approach. More information about activation of host immune mechanisms against this agent [91], emerging genomic technologies for vaccine preparation [92] and an already prepared vaccine against this microorganism [93] show that this is a realistic expectation (table 2 summarizes data mentioned in this review).

Although from all the above mentioned data we seem to be in a dead end situation regarding the causal relationship between *C. pneumoniae* and atherosclerosis, a more realistic approach is to recognize that we have a long way ahead of us for this documentation. Eventually, at the end of this long way the definite answer to this interesting hypothesis will not be a simple yes or no. More likely the
answer will be intermediate. Atherosclerosis is a multifactorial disease. That Chlamydia pneumoniae may be a co-risk factor or a main risk factor in some people (depending on the genetic background or on the contribution of other environmental factors) seems, today, more reasonable.

Acknowledgments

I thank Ass. Prof. Dr. MD Stylianos Chatzipanagiotou for his critical review of the manuscript. I thank also Garyfalia Kalatzopoulou, MD, and Paraskevi Tseke, MD, for providing valuable technical assistance.

References

32 Blessing E, Campbell LA, Rosenfeld ME, Cough N, Kuo C-C: Chlamydia pneumoniae infection accelerates hyperlipidemia induced atherosclerotic lesion development in C57BL/6J mice. Atherosclerosis 2001;158:13–17.